A modular NIRS system for clinical measurement of impaired skeletal muscle oxygenation.
نویسندگان
چکیده
Near-infrared spectrometry (NIRS) is a well-known method used to measure in vivo tissue oxygenation and hemodynamics. This method is used to derive relative measures of hemoglobin (Hb) + myoglobin (Mb) oxygenation and total Hb (tHb) accumulation from measurements of optical attenuation at discrete wavelengths. We present the design and validation of a new NIRS oxygenation analyzer for the measurement of muscle oxygenation kinetics. This design optimizes optical sensitivity and detector wavelength flexibility while minimizing component and construction costs. Using in vitro validations, we demonstrate 1) general optical linearity, 2) system stability, and 3) measurement accuracy for isolated Hb. Using in vivo validations, we demonstrate 1) expected oxygenation changes during ischemia and reactive hyperemia, 2) expected oxygenation changes during muscle exercise, 3) a close correlation between changes in oxyhemoglobin and oxymyoglobin and changes in deoxyhemoglobin and deoxymyoglobin and limb volume by venous occlusion plethysmography, and 4) a minimal contribution from movement artifact on the detected signals. We also demonstrate the ability of this system to detect abnormal patterns of tissue oxygenation in a well-characterized patient with a deficiency of skeletal muscle coenzyme Q(10). We conclude that this is a valid system design for the precise, accurate, and sensitive detection of changes in bulk skeletal muscle oxygenation, can be constructed economically, and can be used diagnostically in patients with disorders of skeletal muscle energy metabolism.
منابع مشابه
Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen
PURPOSE OF REVIEW Continuous wave near infrared spectroscopy (CW NIRS) provides non-invasive technology to measure relative changes in oxy- and deoxy-haemoglobin in a dynamic environment. This allows determination of local skeletal muscle O2 saturation, muscle oxygen consumption ([Formula: see text]) and blood flow. This article provides a brief overview of the use of CW NIRS to measure exercis...
متن کاملBiophotonic Technique to Study Muscle Tissue Metabolism of Athletes
Introduction. Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and haemodynamics in a variety of human tissues, including skeletal muscle. Due to the differing light absorption properties of oxygenated haemoglobin (Hb02) and deoxygenated haemoglobin (HHb), in the near-infrared range of the electromagnetic spectrum (see Figure 1), sh...
متن کاملNear-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients.
Near infrared spectroscopy (NIRS) is a non-invasive technique that allows determination of tissue oxygenation based on spectro-photometric quantitation of oxy- and deoxyhemoglobin within a tissue. This technique has gained acceptance as a tool to monitor peripheral tissue perfusion in critically ill patient. NIRS principle is based on the use of near-infrared electromagnetic waves for qualitati...
متن کاملMeasurement of skeletal muscle tissue oxygenation in the critically ill
Shock is a state of acutely reduced tissue oxygenation. In cardiogenic shock oxygen delivery (DO2) is reduced, but oxygen extraction is preserved. In septic shock DO2 is preserved, but oxygen extraction is decreased because of microvascular changes and disturbed metabolism. Global assessment of DO2 and oxygen consumption does not tell us enough about adequacy of regional perfusion. The aim of t...
متن کاملChanges in skeletal muscle oxygenation during exercise measured by near-infrared spectroscopy on ascent to altitude
INTRODUCTION We sought to quantify changes in skeletal muscle oxygenation during exercise using near-infrared spectroscopy (NIRS) in healthy volunteers ascending to high altitude. METHODS Using NIRS, skeletal muscle tissue oxygen saturation (StO2) was measured in the vastus lateralis of 24 subjects. Measurements were performed at sea level (SL; 75 m), at 3,500 m, on arrival at 5,300 m (5,300 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2000